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Abstract

Analytical type solutions are obtained for the free vibration frequencies and mode shapes of thin corner-
supported rectangular plates with symmetrically distributed reinforcing beams, or strips, attached to the
plate edges. The method of superposition is employed. Equations governing reactions at plate–beam
interfaces are developed in dimensionless form. The approach is comprehensive in that both lateral and
rotational stiffness, and inertia, of the beam are incorporated into the analysis. For illustrative purposes
computed eigenvalues and mode shapes are presented for two plate–beam systems of realistic geometries. It
is shown that the method is easily extended to cover the case where the edge beams do not have a
symmetrical distribution. This appears to be the first comprehensive analytical study of this problem of
industrial interest.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper, exploiting the superposition method, analytical type solutions are obtained for
the free vibration frequencies and mode shapes of corner-supported rectangular plates with
symmetrically distributed reinforcing beams running along the plate edges. It will be seen that the
analysis described is easily extended to handle the slightly more general case where the edge beams
are not symmetrically distributed. Beam reinforcement is treated in the most general case, i.e., the
analysis permits taking into account both bending and rotational stiffness of the beams as well as
their lateral and rotational inertia. Verification of the analytical technique is achieved by
demonstrating that plate eigenvalues approach correct known limits as beam properties approach
the limits of zero, or infinity.
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Eigenvalues for a typical corner-supported plate with edge beams of realistic sizes are tabulated
so that other researchers and designers will have accurate results against which their findings may
be compared.
A search of the literature uncovers very few publications immediately related to the problem of

establishing free vibration frequencies and mode shapes of rectangular plates with edge-beam
reinforcement and with, or without, corner supports. The first publication appears to be one
authored by Cox and Benfield [1]. In this 1959 paper they investigated fundamental frequencies
only, for square isotropic plates with pinpoint support at the corners and flexible beams running
along the plate edges. The beams were considered to be pinned to the plate so that only forces
related to beam flexure were transmitted to the plate. Beam rotational stiffness was not taken into
consideration and effects of beam lateral and rotational inertia were neglected. A theoretical study
of the problem was carried out by means of a finite difference approach.
Elishakoff and Sternberg investigated effects of attached edge beams on rectangular plates in a

1980 publication [2]. Their plates were reinforced by beams running along two opposite edges, the
other two edges being given simple support. In restricting their study to plates with two opposite
simply supported edges they were able to obtain an exact solution. Their problem differs
significantly, of course, from the problem under study here. Nevertheless, they have provided a
fairly extensive review of the literature pertinent to their problem, up to that time. Elishakoff et al.,
also describe some work of Sternberg in which limited results are provided for free vibration of
plates with ‘All-Round’ I-Beam edge stiffeners [3]. Apparently beam inertia effects were neglected.
There are numerous publications in the literature related to plates reinforced with beams

running along the plate lateral surface and parallel to a pair of edges. It is found, however, that
such publications throw little light on the problem immediately at hand.

2. Mathematical procedure

Because of symmetry in distribution of the edge beams, i.e., opposite pairs of edges will be
reinforced with identical beams, It is recognized that all free vibration modes will either be
symmetric or antisymmetric with respect to the plate central axes, or symmetric about one axis
and antisymmetric about the other. These three families of modes will be analyzed separately and
this can be accomplished by focusing attention on one quarter of the plate only.

2.1. Formulation of the plate boundary conditions

A typical rectangular quarter-plate of interest, with reinforcing edge beams, is depicted
schematically in Fig. 1.
Focusing attention on the edge, y ¼ b (Z ¼ 1), Timoshenko and Woinowsky-Kreiger have

shown that, following standard nomenclature, and enforcing continuity of transverse shear forces
at the beam–plate interface, one may write (neglecting inertia forces) [4]

EBI
@4wðx; yÞ

@x4

����
y¼b

¼ D
@

@y

@2wðx; yÞ
@y2

þ ð2� nÞ
@2wðx; yÞ

@x2

� �����
y¼b

; ð1Þ

where all symbols are as defined in Appendix A.
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Furthermore, enforcement of continuity of bending moment across the same interface, permits
one to write [4]

GJ0
@

@x

@2wðx; yÞ
@x@y

����
y¼b

¼ D
@2wðx; yÞ

@y2
þ n

@2wðx; yÞ
@x2

� �����
y¼b

: ð2Þ

It will be appreciated that the quantities on the right-hand side of Eqs. (1) and (2), represent the
negative of the plate vertical edge reaction and bending moment, respectively.
It is highly advantageous to express these equations in dimensionless form. Following the non-

dimensionalizing procedure as utilized in an earlier publication by the author one may express
Eqs. (1) and (2), respectively, as [5]

Vb3

aD

����
Z¼1

¼ �Q11
@4W ðx; ZÞ

@x4

����
Z¼1

ð3Þ

and

Mb2

aD

����
Z¼1

¼ �G11
@2

@x2
@W ðx; ZÞ

@Z

����
Z¼1

; ð4Þ

where

Q11 ¼
EbIb3

a4D
and G11 ¼

GJ0b

a2D
:

The subscripted coefficients Q and G are utilized in connection with expressing lateral and
rotational equilibrium, respectively.
Here, the first subscript refers to the plate edge, with subscripts 1 and 2 referring to edges, Z ¼ 1

and x ¼ 1; respectively. In what is to follow the second subscript will be set equal to 1 when
referring to beam lateral or rotational stiffness, as in Eqs. (3) and (4). The second subscript will be
set equal to 2 when referring to beam lateral or rotational inertia.

Fig. 1. Schematic view of quarter-plate with reinforcing edge-beams.
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It is appropriate to next formulate the counterparts of Eqs. (3) and (4) as they apply to the edge,
x ¼ 1: It is readily shown that these equations may be written as

Va2

D

����
x¼1

¼ �Q21
@4W ðx; ZÞ

@Z4

����
x¼1

ð5Þ

and

Ma

D

����
x¼1

¼ �G21
@2

@Z2
@W ðx; ZÞ

@x

����
x¼1

; ð6Þ

where

Q21 ¼
EBIa3

b4D
and G21 ¼

GJ0a

b2D
:

The components of vertical edge reaction and bending moment required to balance the lateral and
rotational inertia of the edge beams are examined next.
Again, attention is first focused on the edge, Z ¼ 1: It will be apparent that satisfaction of lateral

equilibrium permits one to write in dimensional form

V jy¼b ¼ �m
@2wðx; yÞ

@t2

����
y¼b

; ð7Þ

where m is the beam mass per unit length. Because lateral motion of the plate is harmonic of
circular frequency o we may re-write Eq. (7) as

V jy¼b ¼ mo2wðx; yÞjy¼b: ð8Þ

In order to write Eq. (8) in dimensionless form it is convenient to represent the mass per unit
length of the beam as the product ABrB; where AB is the beam cross-sectional area and rB is its
density. Also recall the definition of l2; the dimensionless frequency of vibration.
It is then readily shown that Eq. (8) may be written in dimensionless form as

Vb3

aD

����
Z¼1

¼ Q12W ðx; ZÞjZ¼1 ð9Þ

with the corresponding equation applicable along the edge, x ¼ 1; becoming

Va2

D

����
x¼1

¼ Q22W ðx; ZÞjx¼1; ð10Þ

where

Q12 ¼
ABrBb3l4

rPa4h
and Q22 ¼

ABrBl
4

arPh
:

Finally, turning to the component of edge moment required to balance the beam rotary inertia
and again beginning by focusing attention on the edge, Z ¼ 1; it will be apparent that satisfaction
of rotational equilibrium permits one to write in dimensional form

M jy¼b ¼ JrB

@2

@t2
@wðx; yÞ

@y

����
y¼b

ð11Þ
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or

M jy¼b ¼ �JrBo
2 @wðx; yÞ

@y

����
y¼b

: ð12Þ

Non-dimensionalizing in a manner similar to that used in handling lateral inertia we find that
Eq. (12) becomes

Mb2

aD

����
Z¼1

¼ �G12
@W ðx; ZÞ

@Z

����
Z¼1

ð13Þ

with the corresponding equation applicable along the edge, x ¼ 1; becoming

Ma

D

����
x¼1

¼ �G22
@W ðx; ZÞ

@x

����
x¼1

; ð14Þ

where

G12 ¼
JrBbl4

rPa4h
and G22 ¼

JrBl
4

rPa3h
:

This completes the formulation of all boundary conditions required for the plate vibration
problem under study.
It is appropriate here to point out that in the above formulation of boundary conditions, and as

formulated by Timoshenko and Woinowsky-Kreiger for static problems, it is assumed that the
central axis of the beam coinsides with the plate edge. This is equivalent to assuming that the
beam central axis lies along the mid-plane of the plate and that plate lateral dimensions are large
in comparison to the edge-beam widths.

2.2. Symmetric mode free vibration analysis

In employing the superposition method it is necessary to choose an appropriate set of
rectangular plate forced vibration solutions (building blocks) for which Levy-type solutions exist.
These solutions are then superimposed and constants contained therein are constrained in order
to satisfy the prescribed boundary conditions.
A solution for fully symmetric modes of the plate of current interest is obtained by

superimposing the set of six building blocks depicted schematically in Fig. 2. Two small open
circles adjacent to an edge indicate that it is given slip-shear support. This implies that vertical
edge reaction, and slope taken normal to the boundary, are everywhere zero.
The edge, Z ¼ 1; of the first building block is free of vertical edge reaction. It is subjected to a

distributed forced harmonic edge rotation of circular frequency o:
It is known that a solution for the amplitude of response of this building block can be expressed

as

W ðx; ZÞ ¼
XN

m¼1;2

YmðZÞcosðm � 1Þpx: ð15Þ

Upon substituting this solution into the plate governing differential equation it is found
that the space variables are separable and the functions Ym(Z) must satisfy the ordinary

D.J. Gorman / Journal of Sound and Vibration 263 (2003) 979–1003 983



differential equation

d4YmðZÞ
dZ4

� 2f2ððm � 1ÞpÞ2
d2YmðZÞ
dZ2

þ f4½ððm � 1ÞpÞ4 � l4�YmðZÞ ¼ 0: ð16Þ

It follows that solutions for the functions YmðZÞ are expressed as
For l2 > ððm � 1ÞpÞ2:

YmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sin gmðZÞ þ Dm cos gmZ: ð17Þ

For l2oððm � 1ÞpÞ2:

YmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sinh gmZþ Dm cosh gmZ; ð18Þ

where

b2m ¼ j2fl2 þ ððm � 1ÞpÞ2g and g2m ¼ f2fl2 � ððm � 1ÞpÞ2g

or

f2fððm � 1ÞpÞ2 � l2g; whichever is positive:

Am and Bm; etc. are constants to be evaluated.
In view of the boundary conditions imposed along the edge, Z ¼ 0; of the present building

block, it will be obvious that all sine and hyperbolic sine terms must vanish. Two boundary
conditions are available for evaluation of the remaining two constants.
The condition of zero vertical edge reaction along the driven edge is expressed in dimensionless

form as [5]

@3W ðx; ZÞ
@Z3

þ nnf2 @
3W ðx; ZÞ

@Z@x2

����
Z¼1

¼ 0: ð19Þ

Fig. 2. Schematic representation of building blocks employed in fully symmetric mode analysis.
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Enforcing this boundary condition it is easily shown that the functions YmðZÞ may be expressed as
For l2 > ððm � 1ÞpÞ2:

YmðZÞ ¼ Am½cosh bmZþ y1m cos gmZ�: ð20Þ

For l2oððm � 1ÞpÞ2:

YmðZÞ ¼ Am½cosh bmZþ y2m cosh gmZ�; ð21Þ

where

y1m ¼
½�bmðb

2
m � n�f2ððm � 1ÞpÞ2Þsinh bm�

½gmðg2m þ n�f2ððm � 1ÞpÞ2Þsin gm�

and

y2m ¼
½�bmðb

2
m � n�f2ððm � 1ÞpÞ2Þsinh bm�

½gmðg2m � n�f2ððm � 1ÞpÞ2Þsinh gm�
:

Finally, the condition of imposed harmonic edge-rotation along the driven edge is enforced. Let
the amplitude of the distributed harmonic edge rotation be expressed as

@W

@Z

����
Z¼1

¼
XN
m¼1

Em cosðm � 1Þpx: ð22Þ

Utilizing Eqs. (20) and (21), and enforcing the above boundary condition, gives
For l2 > ððm � 1ÞpÞ2:

YmðZÞ ¼ Emy11mfcosh bmZþ y1m cos gmZg: ð23Þ

For l2oððm � 1ÞpÞ2:

YmðZÞ ¼ Emy22mfcosh bmZþ y2m cosh gmZg; ð24Þ

where

y11m ¼
1:0

½bm sinh bm � y1mgm sin gm�

and

y22m ¼
1:0

½bm sinh bm þ y2mgm sinh gm�

Thus, the exacot solution for response of the first building block subjected to any number of
driving terms is available.
The second building block of Fig. 2 differs from the first only in that it is driven along the edge,

x ¼ 1: It is well known that the solution for this second building block can be extracted from that
of the first by simply replacing the parameter l2 with l2j2; interchanging the variables x and Z;
and then replacing the aspect ratio j with its inverse.
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Solution for the second building block is expressed in series form as

W ðx; ZÞ ¼
XN
n¼1

YnðxÞcosðn � 1ÞpZ; ð25Þ

where the subscript ‘n’ is introduced to avoid confusion with the previous building block solution.
The functions Yn(x) are expressed as
For l2 j2 > ððn � 1ÞpÞ2:

YnðxÞ ¼ Eny11nfcosh bnxþ y1n cos gnxg: ð26Þ

For l2j2oððn � 1ÞpÞ2:

YnðxÞ ¼ Eny22nfcosh bnxþ y2n cosh gnxg: ð27Þ

As indicated, the quantities y1n; y11n; etc., are extracted from corresponding quantities related to
the first building block solution.
The third building block of Fig. 2 differs from the first, only in that the driven edge is free of

bending moment and is driven by a distributed harmonic vertical edge reaction. Amplitude of this
vertical edge reaction is expressed as

Vb3

aD
¼

XN
m¼1;2

Em1 cosðm � 1Þpx: ð28Þ

Solution for response of this building block is obtained in a manner exactly analogous to that
described for the first building block. The dimensionless bending moment along the edge, Z ¼ 1; is
expressed as [5]

Mb2

aD
¼ �

@2W ðx; ZÞ
@Z2

þ nf2 @
2W ðx; ZÞ

@x2

� �
: ð29Þ

Solution for this third building block takes a form identical to that given by Eqs. (15), (20) and
(24), with coefficients Em replaced by Em1: The only difference relates to the quantities y1m; y11m;
etc., whose counterparts are now designated by a prime symbol and become

y01m ¼
ðb2m � nf2ððm � 1ÞpÞ2Þcosh bm

ðg2m þ nf2ððm � 1ÞpÞ2Þcos gm

and

y02m ¼ �
ðb2m � nf2ððm � 1ÞpÞ2Þcosh bm

ðg2m � nf2ððm � 1ÞpÞ2Þcosh gm

;

y011m ¼ �
1:0

½bmðb
2
m � nnf2ððm � 1ÞpÞ2sinhbm þ yj1mgmðg2m þ nnf2ððm � 1ÞpÞ2Þsingm�

and

y022m ¼ �
1:0

½bmðb
2
m � nnf2ððm � 1ÞpÞ2Þsinhbm þ yj2mgmðg2m � nnf2ððm � 1ÞpÞ2Þsinhgm�

:
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The fourth building block differs from the third, only in that it is moment free and driven along
the edge, x ¼ 1: Its solution is extracted from the third in a manner identical to that described for
extracting the second building block solution from that of the first.
The fifth building block has a condition of zero edge rotation imposed along the edge, Z ¼ 1:

This condition is denoted in the building block figures by two solid dots joined by a short straight
line. It is driven by a concentrated harmonic force located dimensionless distance z from the Z-
axis. The concentrated force is essentially a concentrated vertical edge reaction. The vertical edge
reaction is represented by a Dirac function expanded in an appropriate trigonometric series. This
approach to obtaining the response of building blocks subjected to a concentrated force has been
discussed extensively in Refs. [5,6].
Again, for this building block, the solution takes the form provided by Eqs. (15), (16) and (17).

Of the two non-zero constants to be evaluated, the first is obtained by enforcement of the zero
edge rotation condition discussed immediately above. Using the symbols C0

1m and C0
2m; solutions

for the functions YmðZÞ become
For l2 > ððm � 1ÞpÞ2:

YmðZÞ ¼ Amfcosh bmZþ C0
1m cos gmZg: ð30Þ

For l2oððm � 1ÞpÞ2:

YmðZÞ ¼ Amfcosh bmZþ C0
2m cosh gmZg; ð31Þ

where

C0
1m ¼ bm sinh bm=gm sin gm and C0

2m ¼ �bm sinh bm=gm sinh gm:

In the next step the driving vertical edge reaction is expanded in a cosine series as [5]

V ðxÞ ¼ P
XN

m¼1;2

2:0

adm

cosðm � 1Þpz cosðm � 1Þpx ð32Þ

where dm ¼ 2; for m ¼ 1; and dm ¼ 1; for m > 1:
The above quantity is expressed in dimensionless form as

VðxÞb3

aD
¼ Pn

XN
m¼1;2

2 cosðm � 1Þpz
dm

cosðm � 1Þpx; ð33Þ

where P� ¼ Pb3=a2D

Combining Eqs. (19) and (33) it is readily shown that the functions YmðZÞ may be written as
For l2 > ððm � 1ÞpÞ2:

YmðZÞ ¼ C1mfcosh bmZþ C0
1m cos gmZg: ð34Þ

For l2oððm � 1ÞpÞ2:

YmðZÞ ¼ C2mfcosh bmZþ C0
2m cosh gmZg; ð35Þ

where

C1m ¼
�2 cosðm � 1Þp

½ðbmðb
2
m � n�f2ððm � 1ÞpÞ2Þsinh bm þ C0

1mgmðg2m þ n�f2ððm � 1ÞpÞ2Þsin gmÞ=dm�
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and

C2m ¼
�2cosðm � 1Þp

½ðbmðb
2
m � n�f2ððm � 1ÞpÞ2Þsinh bm þ C0

2mgmðg2m � n�f2ððm � 1ÞpÞ2ÞsinhgmÞ=dm�
:

Here, the value of z has been set equal to 1.0, as this is the only value of this parameter that will
be of interest in the present analysis (corner-supported plates).
The sixth building block of Fig. 2 differs from the fifth only in that it is driven along the edge,

x ¼ 1: Its solution is easily extracted from that of the fifth building block through interchange of
the variables x; and Z; as described earlier. One other consideration is necessary. The new
coefficients C0

1n and C0
2n must be divided by the quantity j4: This is necessary in view of the

definition of P�; the dimensionless concentrated driving force [5].
Before describing generation of the eigenvalue matrix it is appropriate to look briefly at

building block solutions required for analysis of the fully antisymmetric, and symmetric–
antisymmetric modes.

2.3. Analysis of fully antisymmetric modes

This family of modes is analyzed by means of the building blocks of Fig. 3. They differ from
those of Fig. 2 only in that the edges, x ¼ 0; and Z ¼ 0; are given simple instead of slip-shear
support.
It will be obvious, referring to Eq. (15), that solution for the first building block of this set can

be written as

W ðx; ZÞ ¼
XN

m¼1;2

YmðZÞsinð2m � 1Þpx=2: ð36Þ

Note that for all building blocks of this set the sine series above replaces the cosine series of the
earlier set. It will also be appreciated that the symmetric rather than the antisymmetric terms of

Fig. 3. Schematic representation of building blocks employed in fully antisymmetric mode analysis.
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Eqs. (17) and (18), must now be deleted. Beyond these minor changes, solutions for the building
blocks of Fig. 3 are now obtained in a manner identical to that described for those of Fig. 2. The
reader will have no trouble obtaining these solutions.

2.4. Analysis of symmetric–antisymmetric modes

Here, the free vibration modes which are symmetric about the x-axis and antisymmetric about
the Z-axis are investigated. By properly orienting the central axis of the plate of interest, all
possible modes of this family may be analyzed. The required building blocks are shown in Fig. 4.
It will be noted that simple support conditions are imposed along the Z-axis of each building block
while slip-shear conditions are imposed along the x-axis. The reader will recognize that solutions
for all of these building blocks are readily obtained by expressing the displacement amplitude in
terms of the appropriate trigonometric series as already discussed. It is also necessary to enforce
the appropriate boundary conditions in each case.
It will be noted that the solution for the sixth building block of this set cannot be extracted

from the fifth, as was done for the earlier sets. This is because of the nature of the boundary
conditions. In order to arrive at a solution for the sixth building block it is found advantageous to
begin by obtaining the solution for the building block of Fig. 5. This is easily achieved by
following the steps discussed earlier. Finally, transforming this solution by following steps
discussed in connection with the fully symmetric mode analysis, one arrives at the required
solution.

2.5. Development of the eigenvalue matrix

It will be seen shortly that enforcement of the appropriate quarter plate boundary conditions
permits the writing of homogeneous algebraic equations relating the driving coefficients appearing

Fig. 4. Schematic representation of building blocks employed in symmetric–antisymmetric mode analysis.
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in the building block solutions for each of the three mode families. The eigenvalue matrix for each
family is, in fact, the coefficient matrix for the related set of these homogeneous equations. The
form of the associated eigenvalue matrix will be identical for each family. We begin by describing
generation of the matrix for fully symmetric mode analysis.
The actual matrix, based on three-term solutions for building blocks, is depicted schematically

in Fig. 6. Small figures across the top indicate building blocks employed. Inserts along the right-
hand side indicate boundary conditions to be satisfied and the edge to which they apply. Letters M
and V indicate moment and vertical edge reaction equilibrium, respectively. The symbol d at the

Fig. 5. Schematic representation of intermediate building block employed in order to arrive at solution for building

block of ultimate interest.

Fig. 6. Schematic representation of eigenvalue matrix based on three-term solutions for building blocks
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lower right-hand corner indicates that displacement of the quarter plate of interest must equal
zero at this corner of the plate.
Initially the driving coefficients, Em; En; etc., are constrained so that the condition of moment

equilibrium is satisfied along the edge, Z ¼ 1: Reviewing the boundary conditions related to this
edge it is seen that the net displacement of the superimposed building blocks must satisfy the
condition

Mb2

aD
þ G11

@2

@x2
@W ðx; ZÞ

@Z
þ G12

@W ðx; ZÞ
@Z

¼ 0; ð37Þ

where

Mb2

aD
¼ �

@2W ðx; ZÞ
@Z2

þ nf2 @
2W ðx; ZÞ

@x2

� �
:

Standard procedures are followed in enforcing the boundary condition as expressed by Eq. (37).
The contribution of each building block to the left-hand side of this equation is expanded in an
appropriate Fourier series. Here the cosine series is appropriate. The net coefficient of each term
in this new series (including all the building block contributions) is set equal to zero. This gives rise
to a set of K homogeneous algebraic equations relating the (4K þ 1) building block driving
coefficients, where K equals the number of terms utilized in the building block solutions.
Short bars in the first three rows of the matrix of Fig. 6 represent coefficients of this set of

homogeneous equations. It will be noted that some segments of this matrix contain diagonal
terms only. This is because contributions from building blocks related to these segments, including
contributions of the first building block, are already available in a cosine series and off-diagonal
matrix elements equal zero.
The second row of matrix segments relate to the condition of moment equilibrium along the

edge, x ¼ 1:
This equilibrium condition is expressed as

Ma

D
þ G21

@2

@Z2
@W ðx; ZÞ

@x
þ G22

@wðx; ZÞ
@x

¼ 0; ð38Þ

where

Ma

D
¼ �

@2W ðx; ZÞ

@x2
þ

n

f2

@2W ðx; ZÞ
@Z2

� �
:

Generation of the matrix elements associated with this boundary condition proceeds in a
manner almost identical to that described above for the edge, Z ¼ 1: Again a cosine series is
utilized for the Fourier expansion. The single difference relates to generation of elements of the
right-hand column of the matrix. It is found advantageous to now utilize the solution of the sixth
building block in the set as discussed earlier. In this way contributions of the concentrated-force-
driven building block are already available in a cosine series. The need to perform a Fourier
expansion of the bending moment contribution is therefore eliminated.
The third set of equations utilized to construct the eigenvalue matrix are based on satisfaction

of vertical edge reaction equilibrium along the edge, Z ¼ 1: The equation to be satisfied takes
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the form

Vb3

aD
þ Q11

@4W ðx; ZÞ

@x4
� Q12W ðx; ZÞ ¼ 0; ð39Þ

where

Vb3

aD
¼ �

@3W ðx; ZÞ
@Z3

þ n�f2 @
3W ðx; ZÞ

@Z@x2

� �
:

Again, a cosine series is utilized for expansion of the left-hand side of this equation. The first
term of the equation is taken care of by simply adding the quantity unity to each of the elements
lying on the main diagonal of the matrix.
Focusing on the second term of Eq. (39) it is seen that a Fourier expansion procedure must be

utilized in obtaining the contributions of the second and fourth building blocks. Following
conventional procedures one would take the fourth derivative of displacement with respect to the
variable x and then expand it in a cosine series. Experience has shown that better convergence is
obtained by following an alternate procedure. First the displacement is expanded in a Fourier
series and then take the fourth derivative of each term in the series is taken. This is the procedure
that has been followed here.
The fourth set of equations utilized to construct the eigenvalue matrix are based on satisfaction

of vertical edge reaction equilibrium along the edge, x ¼ 1: The equation to be satisfied takes the
form

Va2

D
þ Q21

@4W ðx; ZÞ
@Z4

� Q22W ðx; ZÞ ¼ 0; ð40Þ

where

Va2

D
¼ �

@3W ðx; ZÞ

@x3
þ

n�

f2

@3W ðx; ZÞ
@x@Z2

� �
:

Matrix elements based on this equation are generated in a manner completely analogous to
those generated in connection with Eq. (39).
Finally, the last row of elements in the eigenvalue matrix are based on the requirement that the

sum of all building block contributions toward lateral displacement at the quarter plate outer
corner must equal zero. The appropriate matrix elements are easily generated.
Eigenvalue matrices related to fully antisymmetric and symmetric–antisymmetric free vibration

modes are generated in a manner identical to that described above for fully symmetric modes. Of
course, the appropriate building block solutions must be utilized for the family of modes under
study.
With the eigenvalue matrices available for any mode family, eigenvalues are computed

following well-established procedures. Eigenvalues are those values of the parameter l2; which
cause the determinant of the eigenvalue matrix to vanish. After conducting an eigenvalue search
the mode shape associated with any eigenvalue is obtained by setting one of the non-zero driving
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coefficients equal to unity and solving the resulting set of non-homogenous algebraic equations
for the remaining driving coefficients. Mode shapes are then generated.

3. Computed free vibration results

The first step necessary, before beginning computation of free vibration eigenvalues, is to decide
on the number of terms to be utilized in the building block solutions. This, in turn, depends upon
the number of significant digits required in the computed results. It is known that in the analysis
of plate vibration problems where Dirac functions are utilized, the rate of convergence will be
slower. Consequently, one must begin with convergence tests.
Typical convergence curves are shown in Figs. 7 and 8. They represent studies of first fully

antisymmetric mode free vibration of a square corner-supported plate. The results of Fig. 7 were
obtained with all edge-beam coefficients set equal to zero. The first mode eigenvalue for this
problem was obtained in an earlier and simpler study involving plates with corner supports only
[7]. At that time the eigenvalue was reported as 9.546. In fact, the value obtained here, using the
extra building blocks required for edge-beam vibration tests, is identical. This serves as an
excellent check on the present computational procedure. It will also be noted that, based on the
plotted results, a value of 35 for the parameter K would guarantee three digit accuracy and in
most cases provide up to four digit accuracy.
A similar convergence curve is plotted in Fig. 8. Here the input parameters related to lateral

and rotary inertia are set equal to zero while dimensionless lateral and rotational stiffness
parameters, Q11; Q21; G11; and G21; are arbitrarily set equal to 200. It is seen that the convergence

Fig. 7. Plot of convergence curve associated with first fully antisymmetric mode analysis of corner-supported plate

without edge-beam reinforcement.
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rate represented by Fig. 8 is as good as, or better, than that of Fig. 7. In view of the above findings it
was decided to utilize 35 terms in all building block solutions when computing results plotted here.
Results presented in digital form were computed while utilizing 90 terms in the building block
solutions.
As indicated earlier, there are many verification tests which can be performed to test the validity

of the present analysis. Results of two such validation tests involving first doubly antisymmetric
mode vibration of a square plate are presented in Figs. 9 and 10. Identical edge beams are
considered to be attached along all plate edges.
In Fig. 9 the free vibration eigenvalue is plotted against the edge-beam lateral stiffness

parameter Q11: Effects of beam rotational stiffness and lateral and rotational inertia are neglected.
It will be obvious that in this case the lower eigenvalue limit must equal 9.546 as discussed above.
The upper limit to be approached must equal that related to a square plate with simple support
along all edges, i.e., a value of 2p2: It is seen in Fig. 9 that in fact the plotted curve begins at the
correct value and approaches arbitrarily close to the known upper limit as the beam lateral
stiffness is permitted to increase.
The verification test of Fig. 10 differs from that of Fig. 9 only in that here the dimensionless

rotational stiffness parameter G11 is set equal to Q11 instead of zero. It will be appreciated that the
lower limit for the plotted eigenvalue curve will be unchanged. The upper limit, however, will now
take on a value corresponding to that of first fully antisymmetric mode vibration of the fully
clamped square plate. This value is known to be 27.03 [5].
A study of Fig. 10 reveals that, in fact, the plotted curve begins at the correct lower limit

value and approaches arbitrarily close to the known upper limit as the stiffness parameters are
allowed to increase. These tests constitute valuable checks on the mathematical procedure
employed.

Fig. 8. Plot of convergence curve associated with first fully antisymmetric mode analysis of corner-supported plate with

edge-beam reinforcement. All beam stiffness coefficients equal 200. Effects of beam lateral and rotary inertia neglected.
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A number of similar tests have been conducted where only the dimensionless coefficients related
to lateral and rotational inertia have been allowed to vary. It is demonstrated in fundamental
mode analysis, for example, that increase of either of these parameters causes the eigenvalue to
decrease toward zero.
In order to further demonstrate exploitation of the analytical method described, and to provide

other researchers and designers with digital results against which their findings may be compared,
it was decided to perform a free vibration analysis of a plate with edge beams, of two different but
realistic geometries.
Consider the schematic representation of an edge beam as depicted in Fig. 11. The beam is

of rectangular cross-section with a depth-to-width ratio of 3.0. We will denote the width as ah;
where h equals the plate thickness. Both plate and beam are considered to be fabricated from the
same isotropic material. In order to define the problem consider a square plate with an edge
length-to-thickness ratio of 96. This corresponds, for example, to a plate, 12 in on the edge
with a thickness of 1/8 in, although results apply to any square plate with this length-to-thickness
ratio.
It is considered that identical beams are attached to each plate edge during any computational

analysis. The first three eigenvalues will be computed for each of the three mode families, as
discussed earlier. Attention will be focused on two different values for the edge-beam width
parameter, a:

Fig. 9. Plot of eigenvalue vs. parameter Q11 for first double antisymmetric mode vibration of edge-beam reinforced

square plate, Q11 ¼ Q21: All other beam–plate interaction parameters equal zero.

D.J. Gorman / Journal of Sound and Vibration 263 (2003) 979–1003 995



Before beginning the computations it is necessary to assign values to the beam stiffness
and inertia properties. It will be recalled that the shear modulus, G; is expressed as E=2ð1þ vÞ:
Furthermore, temporarily denoting the beam width and depth as, b and d; respectively, it is

shown that the polar moment of inertia of the beam cross-section becomes

J ¼ ðbd3 þ db3Þ=12: ð41Þ

The moment of inertia of the beam cross-section in torsion may be obtained from the work of
Timoshenko and Goodier [8]. They have shown that, for a beam of rectangular cross-section, with
the above dimensions, the moment in torsion may be written as

Mt ¼ Gy k1b
3d; ð42Þ

Fig. 11. View of section taken through plate and beam for illustrative problem.

Fig. 10. Plot of eigenvalue vs. parameter Q11 for first doubly antisymmetric mode vibration of edge-beam reinforced

square plate, Q11 ¼ Q21 ¼ G11 ¼ G21: Beam inertia effects neglected.
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where, for a ratio d=b equal to 3.0, the value of k1 equals 0.263. The equivalent moment of inertia
in torsion, J0; then becomes k1b

3d:
Utilizing these quantities, and returning temporarily to the definitions, Q11; G11; etc., as

developed earlier, it is shown that for the edge-beam reinforced plates of current interest we
may write

Q11 ¼ 27a4ð1� v2Þ=96; G11 ¼ 4:734a4ð1� vÞ=96;

Q12 ¼ 3a2l4=96; G12 ¼ 2:5a4l4=ð96Þ3; ð43Þ

where the role of the plate length-to-thickness ratio, 96, has been separated out.
Eigenvalues are computed for two values of the beam geometric parameter, a; i.e., 1.0, and 1.5.

Results are tabulated in Tables 1–3.
Setting the value of a equal to zero corresponds to the situation where the corner-

supported plate has no edge-beam reinforcement. This has been done for each mode studied
and in each case excellent agreement between computed eigenvalues and those of Ref. [6] has been
obtained.
Two eigenvalues have been tabulated for each of the three modes listed in Tables 1–3. The first

eigenvalue, l2�; corresponds to the situation where the beams provide elastic lateral and rotational
support only, i.e., inertia effects are neglected. In computing the second eigenvalue, l2; both elastic
and inertia effects are included. In this way it is possible to immediately determine how much
error would be introduced through neglecting inertia effects. It will also be appreciated that
eigenvalues obtained with a equal zero act as lower limits for the eigenvalues l2:
It will be observed in the tables provided that edge-beam inertia effects are extremely small in

first mode vibration of each family. Moving up to the higher modes, however, it is noted that the
inertia effects quickly become significant. This is to be expected as, in the higher modes, the beam
cross-section dimensions become more and more significant in comparison with inter node line
distances of the vibrating plate.
Pairs of selected quarter-plate mode shapes are presented, for square plates, in Figs. 12–14.

Each figure pertains to the first mode of vibration, one figure for each of the three mode families
studied. The laterally supported plate corner is located in the immediate foreground in each
figure. Lateral displacement is, of course, zero at this location. In generating the (a) portion
of the figures the parameter a has been set equal to zero, while, for the (b) portion, it has been set

Table 1

Computed fully symmetric mode eigenvalues for corner supported plate with edge-beams

Mode a l2a l2

1 1.0 3.364 3.342

1.5 4.535 4.516

2 1.0 9.066 8.493

1.5 16.74 15.23

3 1.0 31.32 29.77

1.5 37.07 32.66

a Implies inertia effects neglected, a=h ¼ 96:
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equal to 1.5. All beam inertia effects are included. The objective in presenting these mode shapes
has been to enable the reader to observe the actual influence of the edge beams on these
shapes.
In each case the stiffening effects of the edge beams is evident, particularly as it relates to the

plate lateral displacement along the stiffened edges. This stiffening effect is particularly apparent
in Fig. 13. With sufficient increase in the parameter a the outer edges in the latter figure will
approach a clamped edge condition. These stiffening effects are also particularly apparent along
the outer edge to the viewer’s left in Fig. 14.

4. Discussion and conclusions

It is well demonstrated in the literature that the superposition method has the capacity to obtain
accurate analytical type solutions for the free vibration of rectangular plates with elastic lateral
and rotational support running along the outer boundaries [9,10]. In this paper it is demonstrated
that the same method has the capacity to handle the more complicated problems related to plates

Table 2

Computed fully antisymmetric mode eigenvalues for corner supported plate with edge-beams

Mode a l2a l2

1 1.0 15.05 14.82

1.5 19.08 18.91

2 1.0 27.73 25.68

1.5 40.74 37.73

3 1.0 37.27 35.46

1.5 45.05 42.59

a Implies inertia effects neglected, a=h ¼ 96:

Table 3

Symmetric–antisymmetric mode eigenvalues for corner supported plate with edge-beams

Mode a l2a l2

1 1.0 6.905 6.696

1.5 9.952 9.653

2 1.0 18.28 17.21

1.5 23.86 20.84

3 1.0 24.80 23.88

1.5 30.57 29.74

a Implies inertia effects neglected, a=h ¼ 96:
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Fig. 12. Computed mode shape for square quarter plate in first doubly symmetric mode vibration. (a) Without edge-

beam reinforcement. (b) With edge-beam reinforcement (a ¼ 1:5).
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Fig. 13. Computed mode shape for square quarter plate in first doubly antisymmetric mode vibration. (a) Without

edge-beam reinforcement. (b) With edge-beam reinforcement (a ¼ 1:5).
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Fig. 14. Computed mode shape for square quarter plate in first symmetric–antisymmetric mode vibration. (a) Without

edge-beam reinforcement. (b) With edge-beam reinforcement (a ¼ 1:5).
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with elastic beams attached to the same boundaries. All plate–beam interaction parameters arising
in connection with beam stiffness and inertia have been developed and presented in dimensionless
form. Verification tests associated with known frequency limits that must be approached as beam
stiffnesses are increased arbitrarily, have been conducted. It is demonstrated that effects of beam
lateral and rotational inertia are easily included, or deleted, in the analysis. This permits the
analyst to decide whether or not such effects may be neglected for the purposes of a particular
design.
It was demonstrated that edge beams of certain realistic geometries can have significant effects

on raising natural frequencies of corner-supported plates. This may be of interest in the design of
electronic circuit boards, for example, where it is often desired to increase the fundamental
frequency beyond certain pre-set levels.
Finally, the question may arise as to how one would handle similar problems where the edge-

beam properties do not possess symmetry with respect to their distribution about the plate central
axes. An example of such a plate would be one where beams of different properties run along each
of the four edges. The reader may wish to examine the set of building blocks utilized in analyzing
the fully symmetric modes of the present plate (Fig. 2). It will be appreciated that replacing the
quarter-plate with the full plate and coupling the above set of building blocks with an additional
set driven along the other two plate edges will permit the desired general analysis to be achieved.
Building block solutions for the additional set will be extracted from those of the first set.
In summary, it appears that the present work constitutes the first comprehensive analytical type

solution to the problem of free vibration of corner-supported rectangular plates with
symmetrically distributed edge-beam reinforcement.

Appendix A. Nomenclature

a; b edge dimensions of quarter-plate
AB cross-sectional area of edge beam
D plate flexural rigidity=Eh3=12ð1� v2Þ
E Young’s modulus of plate material
EB Young’s modulus of beam material
G beam modulus of elasticity in shear
h plate thickness
I area moment of inertia of beam cross-section
J polar moment of inertia of beam cross-section
J0 moment of inertia of beam cross-section in torsion
K number of terms utilized in building block solutions
M plate bending moment
Mt torsional moment in beam
m mass of beam per unit length
P amplitude of concentrated harmonic driving force
P� ¼ Pb3=a2D
Q11;Q21y;
G11;G21y; etc.,

beam–plate interaction coefficients defined in text
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t time
V plate vertical edge reaction
w plate lateral displacement
W ¼ w=a

x; y co-ordinates measured along edges of quarter-plate
v the Poisson ratio (taken as 0.333 in computations reported here)
v� ¼ ð2� vÞ
x; Z; ¼ x=a; and y=b; respectively
o circular frequency of vibration
r mass of plate per unit area
rP density of plate material
rB density of beam material
l2 vibration eigenvalue=oa2Or=D

j plate aspect ratio, b=a
a illustrative edge-beam width=ah
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